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Abstract. An empirical potential energy function, comprising two- and three-body terms, has
been derived for the rare-earth element ytterbium, by fitting parameters to the phonon dispersion
curves, elastic constants, lattice energy and lattice distance of the face-centred-cubic (fcc) phase
of Yb. This potential reproduces the structural data for fcc Yb, including the negative Cauchy
pressure, and correctly accounts for the metastable bcc phase. We predict the bcc phonon
dispersion curves (not yet available in the literature) and the activation energy for the Bain
transformation between the fcc and bcc phases. The surface energies and relaxations of the
high-symmetry surfaces of fcc Yb ((111), (100) and (110)) are calculated for the first time.
Furthermore, we predict that the (110) surface of Yb is stable with respect to the 1×2 ‘missing-
row’ reconstruction.

1. Introduction

In recent years, an empirical two- plus three-body potential has been developed [1, 2] for
simulating the physical properties of metallic elements. The Murrell–Mottram potential has
successfully reproduced structural data for a number of metallic solids and has subsequently
been used in simulating properties of the bulk, surfaces and clusters [3, 4]. In this model,
a number of parameters are fitted to a variety of experimental data, such as the phonon
frequencies, the elastic constants and the vacancy formation energy. The two- and three-
body components of the potential are simple analytic functions of the interatomic distances.

In contrast with the case for many other potentials, the three-body term is allowed to
be either positive or negative, which gives it the advantage of being able to predict a wide
range of structures to be the most stable. This is particularly important for Yb, as it can
exist as either a hcp, fcc or bcc phase, depending upon the temperature and pressure.

This technique for fitting potentials has been successfully applied to a number of
elements, namely: simple metals (Li, Na, K, Ca, Sr, Al) [4–6]; transition metals (Pt, Pd,
Fe) [7, 8]; noble metals (Cu, Ag, Au) [9]; semiconductors (C, Si, Ge, Sn) [10]. Confidence
in our potential is gained from its applicability to such a wide range of solids. The aim of
the present work is to derive a potential capable of reproducing a range of bulk and surface
properties of the rare-earth element Yb. This is the first attempt to apply the MM potential
to a rare-earth metal, or, indeed, any element with valence f orbitals. Yb is interesting to
study as it has two cubic phases (one of which is well documented, but the other less so);
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furthermore, it has a negative Cauchy pressure (C12− C44 < 0) which is a challenge for
empirical potentials. Therefore, we hope to use our potential, of proven ability, to predict
quantities as yet unknown, such as the bcc phonon dispersion curves. A comparison of
this potential with other empirical models in the literature is given elsewhere [11]. In [11]
we discuss the analytic form and numerical efficiency, and attempt to give insight into the
transferability of our potentials (which are all listed in the appendix of [11]). Our aim is to
demonstrate the global applicability of our method.

As mentioned above, Yb is known to undergo two temperature-driven phase transitions
at constant pressure [12]. At low temperatures, it has the hcp structure (α-Yb) which
undergoes a phase transition at around 260 K to the fcc structure (β-Yb). At 1068 K,
just below the melting point, there is another phase transition to the bcc structure (γ -
Yb) [13]. Under a pressure of 13 kbar, Yb is thought to undergo a metal-to-semiconductor
transformation and at a pressure of 40 kbar the fcc phase undergoes a transformation to the
bcc phase. These phase changes have been attributed to pressure-induced broadening of the
d bands and their increased hybridization with the s–p bands [14].

The study of the lattice dynamics of Yb has so far been limited, due to the difficulty
in producing pure Yb samples, and large single crystals [15]. However, phonon data for
the fcc phase of Yb are available [12] as are the elastic constants [16]. Previous theoretical
work has primarily been concerned with investigating the dispersion curves of Yb. Ambika
Prasadet al [17] used a model pseudopotential to interpret the phonon dispersion of both
Ca and Yb. They were able to model, with good accuracy, the anisotropic nature of Yb
exhibited in the slopes of the T1 (110) and T2 (110) branches. More recently, Singh and
Singh [18] have used an effective pair potential to calculate the phonon spectra of rare-earth
and actinide elemental metals in the fcc phase, along with the binding energy and elastic
constants of these metals. Their potential consists of a two-body density-of-states model,
and they use second-order perturbation theory for the free-electron part, and a rational
dielectric function and the Heine–Abarenkov model for treating the conducting electrons.
Band-structure calculations, based on density functional theory, have also been performed,
to investigate metal films of Yb grown on metal surfaces [19].

In this paper, we describe the derivation of a Murrell–Mottram potential for Yb by fitting
structural and lattice dynamical data for fcc Yb. The potential is also used to predict the
(as yet unknown) phonon dispersion curves for metastable bcc Yb, as well as the energies,
relaxations and reconstructions of the high-symmetry surfaces of fcc Yb.

2. The model

The Murrell–Mottram potential [1] is based on a many-body expansion of the potential
energyV , which is terminated after the three-body term:

V =
∑
i

∑
j>i

V
(2)
ij +

∑
i

∑
j>i

∑
k>j

V
(3)
ijk + · · · . (1)

The potential is described in detail elsewhere [1, 4].
The two-body (pair) potential is expressed as

V
(2)
ij = −D(1+ a2ρij ) exp(−a2ρij ) ρij = rij − re

re
(2)
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and, using the symmetry coordinatesQi defined as follows:(
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the three-body term has the form

V
(3)
ijk = D{c0+ c1Q1+ c2Q
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D andre are scaling parameters which ensure that the cohesive energy and the lattice spacing
of the reference solid (fcc Yb) are reproduced exactly. The damping functionF(a3,Q1)

makes the three-body termV (3)
ijk tend towards zero asQ1 tends to infinity. Two functions

were found to give very good results—sech(a3Q1) and exp(−a3Q1)—which both decay
exponentially at large values ofQ1 yet have differing short-range behaviour. At short range
the exponential damping function can become large and the three-body term can dominate
over the two-body term, which may lead to the potential collapsing during the optimization
procedure. This is countered by introducing a hard-wall term exp(−50{ρ + 0.2}), which
prevents the nearest-neighbour distance falling belowrmin = 0.8re.

Table 1. Data (for fcc Yb) used in the fitting of the MM potential for Yb.

Property

rl /Å 5.48
Ecoh/eV 1.6
Evac/eV 0.67
C11/eV Å−3 0.186
C12/eV Å−3 0.104
C44/eV Å−3 0.177
Mass/g mol−1 173.04

Frequencies/1012 Hz q L T1 T2

[q, 0, 0] 0.5 0.497 0.377 —
1.0 1.192 0.708 —

[q, q, q] 0.2 0.405 0.082 —
0.5 1.094 0.278 —

[q, q,0] 0.5 0.828 0.250 0.708
0.9 0.731 0.693 1.192

3. The potential

The data used in the least-squares fitting of the potential are listed in table 1. The data
comprise 14 phonon frequencies taken along the high-symmetry lines [q00], [qq0] and
[qqq], three elastic constants and the vacancy formation energy.

Stassiset al [12] have measured the phonon dispersion curves for fcc Yb by means of
coherent inelastic neutron scattering at room temperature and atmospheric pressure. The
large difference in the slopes of the T1 and T2 branches in the [qq0] direction implies that
fcc Yb is highly anisotropic with respect to the propagation of elastic waves. Data for the
bcc and hcp phases are not yet available. In the absence of any direct experimental data
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on individual elastic constants, theoretical values obtained by Stassiset al [12] were used.
They were determined by using a Born–von Kármán harmonic force-constant model to fit
the values to the phonon dispersion curves.

A theoretical value for the vacancy formation energy for fcc Yb has been derived from
the Debye temperature (measured by means of x-ray powder diffraction at room temperature)
by Krishnaet al [16]. The value of the Debye temperature measured wasθM = 109±5 K,
which agrees reasonably well with values obtained from calculations based on elastic
constants (94 K), the heat capacity (105 K) and the melting point (120 K) [20, 13]. For
fcc metals, Glyde [20] has derived a relationship between the Debye temperature and the
formation energy of vacancies:

Evac = K(k/h)2mθ2
Ma

2 (5)

wherek andh are the Boltzmann and Planck constants respectively,a is the interatomic
spacing andK is a constant equal to 1.17. A value of 0.67 eV has been calculated for the
vacancy formation energy of fcc Yb, which is close to the value of 0.69 eV determined for
bcc Yb [16].

In our two-body+ three-body model the vacancy energy is given by

Evac = −
[

1

2

∑
j 6=0

V
(2)

0j +
2

3

∑
j 6=0

∑
k>j

V
(3)

0jk

]
(6)

where we assume that the relaxation around the vacancy is small; this is usually the case
for close-packed metals [5]. The cohesive energy is given by

Ecoh = −
[

1

2

∑
j 6=0

V
(2)

0j +
1

3

∑
j 6=0

∑
k>j

V
(3)

0jk

]
. (7)

4. Results

The search of (a2, a3) space revealed a number of potentials which gave a very good
fit to the experimental data, correctly predicting the correct energy ordering of the solid
structures, with potential energy curves consisting of well-formed single minima which do
not collapse at short range. Two potentials were identified as being superior, one involving
an exponential damping function (a2 = 6, a3 = 8) and the other involving a hyperbolic
secant damping function (a2 = 6, a3 = 11). The coefficients of the two potentials were
quite different, reflecting the fact that the exponential and hyperbolic secant potentials differ
in how well they reproduce bulk and surface properties. Thus the exp(6, 8) potential gave
the best overall fit to the data, whereas the sech(6, 11) potential predicted a first interlayer
contraction on the fcc (110) surface, which is consistent with what is known about fcc
(110) surfaces of other metals. However, because of the better overall behaviour of the
exponential potential, in this paper we report only the results of applying the exp(6, 8)
potential. For the optimized MM potential for Yb see table 2.

4.1. Lattice dynamics

Table 3 compares the experimental values of the elastic constants of fcc Yb with those
predicted by the MM potential and those obtained by Singh and Singh [18] who quote results
obtained using two different dielectric functions. For the purposes of our comparison we
took the best result quoted by Singh and Singh in each case. Our calculated elastic constants
are within 4% of the experimental values, although the ordering of theC11- andC44-values
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Table 2. The optimized MM potential for Yb.

Parameter Value

a2 6
a3 8
F exp
D/eV 0.300
re/Å 4.127
c0 0.128
c1 1.306
c2 2.953
c3 −1.010
c4 −0.483
c5 −2.841
c6 1.090

Table 3. Bulk properties for fcc Yb, calculated using the MM Yb potential, compared to the
experimental values used in the fitting and theab initio calculations of Singh and Singh [18].

Property Experimental This work Reference [18]

Evac/eV 0.67 0.67 —
C11/eV Å−3 0.186 0.181 0.181
C12/eV Å−3 0.104 0.106 0.115
C44/eV Å−3 0.177 0.185 0.175
Anisotropy= 2C44/(C11− C12) 4.317 4.904 5.303
Bulk modulus= (C11+ 2C12)/3 0.131 0.131 0.137
Compressibility= 1/(bulk modulus) 7.614 7.627 7.299
Cauchy pressure= C12− C44 −0.073 −0.079 −0.060
Tetragonal shear= (C11− C12)/2 0.041 0.038 0.033

is wrong due to our overestimating the value ofC44 and underestimating the value ofC11.
However, the difference between these two values is very small (≈0.009) and the results
that we obtain are closer on average to the experimental values than those obtained by Singh
and Singh [18].

For solids in which the atoms lie at centres of inversion symmetry, and in which
there are only central interatomic forces (distance-dependent two-body forces), the Cauchy
relationship holds (C44 = C12). There is a 71% difference between these two values for Yb
compared with a 15% difference for the alkali metals, showing the importance of many-body
forces for Yb. In contrast with the positive values for most metals, the Cauchy pressure
(C12 − C44) for Yb is negative (i.e.,C12 < C44), confirming that many-body forces are
necessary to model the bulk properties. Other empirical many-body potentials such as the
Sutton–Chen and embedded-atom-method potentials cannot reproduce a negative Cauchy
pressure.

The phonon frequencies calculated along the high-symmetry lines in the Brillouin zone
are in excellent agreement with the experimental values as shown in figure 1. They are
better than the pseudopotential models results of Ambika Prasadet al [17] and Singh and
Singh [18]. Yb shows a strong anisotropy with regard to elastic waves, as evinced by the
difference in slope of the T1 [qq0] and T2 [qq0] branches and the anomalous dispersion of
the T1 [qq0] branch betweenq = 0.5 and 0.7, where the frequencies rise above the line for
the velocity of sound [12]. Strong similarities can be seen with the dispersion curves of Ca
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Figure 1. Phonon dispersion curves calculated for fcc Yb. Experimental values are indicated
by the points.

Figure 2. Phonon dispersion curves calculated for bcc Yb.

which have also been successfully modelled with a MM potential [6].
Although the experimental phonon dispersion curves of bcc Yb have not yet been

determined, our calculated (predicted) phonon dispersion curves are shown in figure 2. The
potential was summed out to eleven shells, in order to obtain a cut-off radius consistent
with the fcc calculation. It is interesting to note that the T branch lies above the L branch
along the [q00] direction, which is unusual for metals with the bcc structure, but the general
shapes of the curves are distinctly bcc-like. All frequencies, throughout the Brillouin zone,
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were found to be real—indicating that the bcc structure is a local minimum on the potential
energy hypersurface for Yb.

Table 4. Cohesive energies and nearest-neighbour distances calculated for a variety of Yb
structures. The values in brackets are experimental distances (from [13] and references therein);
see the text for more details.

Structure Coordination Ecoh /eV Rnn/Å

3D hcp 12 1.601 3.88 (3.88, 3.90)
fcc 12 1.600 3.88 (3.88)
bcc 8 1.595 3.71 (3.84)
she 8 1.411 3.90
scu 6 1.286 3.81
dia 4 0.840 3.81

2D f111 9 1.219 3.95
f100 8 1.148 3.92
f110 6 0.925 3.97
tri 6 0.861 4.03
squ 6 0.718 3.97
hex 3 0.504 4.02

4.2. Structural stabilities

If a potential is to be used to study liquids, surfaces, clusters etc, it is essential that it is
shown to be applicable over a wide range of coordination number. The cohesive energies
and nearest-neighbour distances have been calculated for a number of two- and three-
dimensional structures, as shown in table 4. The 3D structures considered are: hexagonal
close packed (hcp), face-centred cubic (fcc), body-centred cubic (bcc), simple hexagonal—
AAA stacking of triangular nets (she), simple cubic (scu) and diamond (dia). The 2D
structures consist of single layers: triangular net (tri), square net (squ), hexagonal net (hex,
i.e. a single graphite layer), and two-layer slabs (f100, f110, f111) corresponding to the
top two layers of the fcc (100), (110) and (111) surfaces, respectively. Getting reasonable
relative energies for these structures is of great importance if our potential is subsequently
to reproduce the properties of surfaces accurately.

In general the stability of a particular structure is found to decrease with decreasing
coordination number. We find that the hcp phase is marginally more stable than the fcc
phase, which in turn is more stable than the bcc phase. This agrees with the experimental
ordering of structures [13]. The values in brackets are the experimental nearest-neighbour
distances. For hcp structure, which has two independent lattice constantsa and c, the
nearest-neighbour distance has been calculated using an idealized hcp structure, in which
c = √8/3a, so all twelve neighbours of an atom in the hcp lattice are at the same distance.
The two shortest M–M contacts in hcp metals are: six neighbours ata and six neighbours
at
√
a2/3+ c2/4. The latter distance reduces toa when c is ideal (i.e.,

√
8/3a). The

experimental values at 296 K area = 3.8799Å and c = 6.3859Å [21]. Thus thec/a ratio
is equal to 1.646 which is close to ideal (1.633) but a little stretched alongc. Therefore,
using the experimental values, the two nearest-neighbour distances are 3.88 and 3.90 (as
quoted in the table); these agree well with our calculated distance of 3.88 for the ideal hcp
structure. The shortening of the bcc nearest-neighbour distance, relative to that for the fcc
structure, is overestimated.
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4.3. The Bain path for fcc–bcc interconversion

There are a large number of possible diffusionless pathways via which one can interchange
the fcc and bcc phases [22]. We have studied the tetragonal Bain path. This pathway
allows the interconversion to progress with a minimum of atomic movement, and hence
strain, in the lattice. The restriction that must be obeyed for this to be valid is that there
must be no diffusion and the atoms must be exchangeable. To convert fcc to bcc structure,
we contract the lattice parallel to thec-axis and expand it parallel to thea- andb-axes. We
have investigatedc/a ratios in the range 0.8 to 1.6.

Figure 3. The variation of the potential energy with thec/a ratio for Yb along the tetragonal
Bain deformation path.

There are two minima along the Bain path; one corresponds to the fcc structure
(c/a = √2) and the other corresponds to the bcc structure (c/a = 1) (in the bct def-
inition [23]). Figure 3 shows that the fcc structure is lower in energy than the bcc structure,
as expected from table 4. To convert the fcc to the bcc structure, we predict an activation
energy of 0.0073 eV (0.0027 eV for the reverse transformation).

A contour plot of the potential energy surface (plotted as a function ofc/a and the
reduced volumeV/V0, whereV0 is the volume per atom of the fcc phase) is shown in
figure 4. Only two minima are present on the map, corresponding to the bcc and fcc
structures, and the fcc structure is the most stable. This is really quite remarkable considering
that no information on the bcc structure was input into the potential fitting procedure.

4.4. Surface energies and relaxations

The interlayer separations at metal surfaces are found to differ from those of the bulk.
This is known as surface relaxation and it is common for the outer-layer spacing of the
fcc (110) surface to decrease. Structural changes known as reconstructions, which involve
movements in thex, y-plane as well as parallel to thez-axis, also occur on some surfaces,
as the atoms find a more energetically stable configuration. For fcc structures, the energies
of the surfaces decrease in the order of the stability,(111) < (100) < (110), predominantly
due to the decreasing coordination of surface atoms on going from the (111) to the (110)
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Figure 4. A contour plot of the potential energy surface, for body-centred tetragonal Yb, as a
function of c/a and the reduced volumeV/V0. The lowest contour (around the bcc and fcc
minima) is that for−1.60 eV and the contour spacing is 0.01 eV.

surface.
Surface relaxations were studied by optimizing the atomic positions in a double-sided

slab of atoms having identical surfaces in both the+z- and−z-directions. These slabs
consist of a cuboidal box of: 11 (100) layers with an (x, y) periodicity of 7× 7 atoms per
layer; 15 (110) layers of 7×6 atoms per layer; and 9 (111) layers of 7×8 atoms per layer.
The energy is minimized using the NAG [24] conjugate-gradients routine e04dgf.

The surface energy is calculated as

Es = NEcoh + V
2A

(8)

whereV , the total potential energy of the slab, is a negative quantity andEcoh, the bulk
cohesive energy, is defined as a positive quantity.N is the number of atoms in the slab
andA is the surface area.

As far as we are aware, no experimental data exist for the relaxations of these high-
symmetry surfaces. However, our surface energies can be compared with the recommended
values for the ‘average’ surface energy at 0 K extrapolated from experimental values [25],
the ab initio calculations for the (111) surface by Skriver and Rosengaard [26] and the
estimated ‘average’ surface energy from the recent surface tension measurements performed
by Bezukladnikova and Kononenko [15] for liquid Yb. Bezukladnikova and Kononenko
measured the surface tension using the large-drop method carried out in a high-purity
helium atmosphere with a sample containing less than 0.19% impurity. Problems with
oxygen retention at the surface gave inaccuracies estimated at 15–20% of the true value by
comparison with errors in measurements for other elements. The measurement procedure
is still problematic, especially for rare-earth metals, due to oxygen retention, impurities in
the metal, difficulties in sample preparation and difficulties in finding the correct choice of
experimental parameters.

The solid–vapour free surface energy (γSV ) for an average surface can be derived from
the liquid surface tension (γLV ) using the assumption thatγSV /γLV ≈ 1.18 at the melting
point, Tm [27]. The γSV -value is quoted in table 5, along with the experimental value
quoted in [25] and the calculated value quoted in [26]. Our calculated (using the bulk-
derived potential) values are in good agreement with the ‘recommended value’ of de Boer
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Table 5. Relaxed surface energiesEs (meV Å−2) for the low-index surfaces of fcc Yb.

(111) (100) (110) (1× 2)†

This work 29.7 30.4 32.0 33.6
ab initio [26] 24.4
Experiment [15]a 26.3
Experiment [25]b 31.2

† The reconstructed (110) surface.
a An estimate from the experimental (average) surface tension value.
b The recommended experimental surface energy at 0 K.

et al for the 0 K experimental surface energy and the value ofEs(111) calculated by
Skriver and Rosengaard who argue that ‘the surface energies calculated by present dayab
initio methods are at least as accurate as the experimental values’ [26]. We also predict
that the 1× 2 reconstructed (110) surface of fcc Yb has a higher surface energy than the
unreconstructed surface, which implies that the (110) surface will not reconstruct. It is not
currently known, experimentally, whether or not the (110) surface reconstructs.

Table 6. Percentage relaxations calculated for the outer three interlayer spacings of unrecon-
structed fcc Yb surfaces. Negative values correspond to contractions in interlayer spacings
compared to those in the bulk.

Surface 1d12 (%) 1d23 (%) 1d34 (%)

(111) −0.08 0.06 −0.07
(100) 1.67 0.44 −0.44
(110) 6.22 −1.99 0.84

Our predicted relaxations are listed in table 6. For most metals, there is a contraction
of the outer interlayer spacing of the most open fcc (110) surface to compensate for the
decrease in coordination. However, our potential predicts an expansion. Given the lack of
experimental data, we cannot be sure that our potential is predicting unphysical behaviour or
that it possesses too much pair character. There is generally no consensus on the movements
of the (111) and (100) metal surfaces except that any movements are small; our results are
consistent with this finding.

5. Conclusions

We have derived an empirical two- plus three-body potential energy function for Yb and
shown that the MM potential reproduces the experimental structural data of fcc Yb to a
high degree of accuracy. The potential also predicts the bcc phase to be metastable. We
have presented phonon dispersion curves for bcc Yb and calculated the activation energy
required for the fcc–bcc phase change, along the tetragonal Bain path. Furthermore, we
have investigated the surface behaviour of fcc Yb. Our calculated surface energies of the
high-symmetry surfaces of fcc Yb are in good agreement with the available surface energy
data. We have made predictions for the relaxations of these surfaces; on the (111) and
(100) surfaces the movements are small, which concurs with the known relaxations in other
metals [7, 9]; however, for the open (110) surface we get the surprising prediction of a
first interlayer expansion. We have also calculated the energy of the 1× 2 reconstructed
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(110) surface, which is favoured for some metals (e.g. Au and Pt), but find that for Yb the
unreconstructed (110) surface is more stable.
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